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a b s t r a c t

Multiscale modeling schemes encompass models from the atomistic to the continuum scale. Phenomena
at the mesoscale have typically been simulated using models based on reaction rate theory, such as mean
field rate theory (MFRT) or Monte Carlo. These mesoscale models are appropriate for application to prob-
lems that involve intermediate-length scales, and timescales from those characteristic of diffusion to
long-term microstructural evolution (�ls to years). Although the MFRT and Monte Carlo models can
be used simulate the same phenomena, some of the details are handled quite differently in the two
approaches. Models employing the rate theory have been extensively used to describe radiation-induced
phenomena such as void swelling and irradiation creep. The primary approximations in such models are
time and spatial averaging of the radiation damage source term, and spatial averaging of the microstruc-
ture into an effective medium. Kinetic Monte Carlo models can account for these spatial and temporal
correlations; their primary limitation is the computational burden, which is related to the size of the sim-
ulation cell. Even with modern computers, the maximum simulation cell size and the maximum dose
(typically much less than 1 dpa) that can be simulated are limited. In contrast, even very detailed MFRT
models can simulate microstructural evolution for doses up 100 dpa or greater in clock times that are rel-
atively short. Within the context of the effective medium, essentially any defect density can be simulated.
A direct comparison of MFRT and object kinetic MC simulations has been made in the domain of point
defect cluster dynamics modeling, which is relevant to the evolution (both nucleation and growth) of
radiation-induced defect structures. Overall, the agreement between the two methods is best for irradi-
ation conditions that produce a high density of defects (lower temperature and higher displacement rate)
and for materials that have a relatively high density of fixed sinks such as dislocations.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Developing an adequate quantitative understanding of the
changes in the physical and mechanical properties of materials that
occur during thermal aging or under irradiation requires a model
capable of describing the formation and growth of point defect
and solute clusters through all stages of cluster evolution, from
their nucleation to growth and coarsening. This so-called cluster
dynamics behavior has been extensively investigated by two alter-
nate implementations of reaction rate theory: the mean field rate
theory (MFRT) and object kinetic Monte Carlo (OKMC). The MFRT
approach is used so extensively that the distinction between this
specific implementation and the underlying reaction rate theory
is often forgotten or neglected. In principle, MFRT and OKMC should
predict essentially the same behavior when used to solve the same
ll rights reserved.
problem. However, this equivalence has not been demonstrated in
such a specific case. The purpose of the present study was to bench-
mark these two approaches against one another using a series of
well-posed computational problems. The intent was to either verify
that the expected equivalent predictions were obtained, or to deter-
mine regimes for which equivalence was not obtained. In the latter
case, an effort was made to explain any differences that were ob-
served. Because the study was focused on benchmarking and com-
paring the two methods, the simulations generally involved
idealized conditions or in some cases non-physical parameter
choices. As a result, no direct comparison with experimental data
was possible. Following the Introduction, a brief, self-contained
description of both the computational methods is provided in Sec-
tion 2. An extensive comparison of the predictions obtained from
the models on the sample problems is given in Section 3. This is fol-
lowed by a short Discussion and Summary.

The evolution of a random spatial distribution of defect clusters
can be described in terms of a defect size distribution function
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(SDF) in the framework of the mean field approximation [1]. Evo-
lution of this SDF can be accounted for in the context of a MFRT
model through the use of a Master Equation (ME) that describes
both growth and dissolution of the clusters due to reactions with
mobile defects (or solutes), thermal emission of these same spe-
cies, and cluster coalescence if the clusters are mobile. The relevant
physical processes require accounting for clusters containing a
very large number of point defects or atoms (>106), particularly
for high irradiation doses or long ageing times. An explicit discret-
ization of the ME leads to a system of coupled differential equa-
tions in which time is an explicit variable. The number of
equations is the same as the number of point defects (and/or sol-
utes) in the largest possible cluster. Numerical integration of such
a system is feasible on modern computers, but such calculations
are overly time consuming. Most practicable solutions to the ME
by numerical methods employ some grouping procedure to signif-
icantly reduce the number of equations [2–7].

The OKMC technique provides another method for calculating
the evolution of the cluster SDF. This method has become practica-
ble during the last decade because of progress in computer tech-
nology. In the framework of OKMC, each point defect or defect
cluster is treated as an object located in a specific position in a sim-
ulation cell of a given volume. Irradiation is simulated by introduc-
ing new point defects or defect clusters at discrete times and in
specific locations in the box, and evolution occurs as the various
objects migrate and participate in a series of predefined reactions
with other objects. Each object type has associated properties, such
as size, reaction radius, and, if mobile, jump frequency and activa-
tion energy for migration. The reaction probabilities for various
physical transition mechanisms, such as migration jump rates
and the emission rate of point defects from larger defects or traps,
are calculated based on Arrhenius frequencies for thermally acti-
vated events. The Monte Carlo algorithm [8] is used at each step
to select the event that is going to take place based on the corre-
sponding probabilities. After a given event is chosen, the time is in-
creased according to an algorithm that depends on the jump
frequencies for all the possible events in the system.

One advantage of the MFRT approach is that there are essen-
tially no limits to the density or size of the clusters when calculat-
ing their evolution, providing the opportunity to compare with a
broad range of experimental observations. However, the spatial
and temporal correlations in defect production are not accounted
for, which may in some cases lead to a loss of specific information.
OKMC models can account for these spatial and temporal correla-
tions; their primary limitation is related to the size of the simula-
tion cell. To maintain a reasonable simulation time, the practicable
box size is typically a cube with an edge length on the order of
100 nm. This limits the total cluster number density that may be
obtained in this method. For example, if there is only one cluster
in a 100-nm � 100-nm � 100-nm simulation cell, the correspond-
ing cluster number density is 1021 m�3. This is an intermediate to
high defect density for many relevant irradiated materials, and
no lower cluster density can be treated by OKMC in a box of this
size. Even for the relatively high defect density of 1022 m�3, the
Table 1
Comparison of MFRT and OKMC methods

Feature or treatment of variable MFRT

Solution method Deterministic
Time Explicit variable
Space Homogeneous effective mediuma

Defect production Time and space-averageda

Sink strength Explicit analytical expression
Defect or sink density Essentially unlimited

a Partial corrections to the typical MFRT approximations are possible, including multire
a so-called cascade diffusion model [9] to treat the time dependence of primary damag
number of clusters in such a simulation cell would only be 10,
which may not be enough to provide a good statistical simulation
of defect cluster evolution. Another problem with statistics may
arise when simulating clusters that are not stable in a certain size
range, that is, when cluster nucleation requires reaching a certain
critical size at which they become stable enough to be able grow
continuously. Such nucleation is possible due to fluctuations in
the cluster growth and resolution processes and will be properly
calculated by OKMC only if the density is sufficiently high to main-
tain such fluctuations.

Thus, both the MFRT and OKMC have advantages and limita-
tions based on the underlying nature of the techniques; the major
features of these models are briefly summarized in Table 1. Be-
cause the two techniques simply represent different mathematical
methods for solving a given problem, they should provide similar
results for well designed sample problems. A systematic applica-
tion of the two methods will determine if they produce consistent
results, or whether there are problems for which one method is
preferable to the other. This is the main objective of the present
study. Because the MFRT approach has been well-established by
broad use during the last few decades, the approach taken here
was to use MFRT calculations as a reference point to evaluate the
predictions of the OKMC method for several different types of sim-
ulations. The specific MFRT and OKMC models used for this com-
parison are discussed in the next section.
2. Description of models

The comparison of the two approaches is more straightforward
if restricted to a particular case. This investigation is focused on the
evolution of the SDF of vacancy and self-interstitial clusters in a
pure metal under irradiation with a constant network dislocation
density as the only fixed sink. In the following discussion, the term
void is used in a generic way to refer to a vacancy cluster of any
size. The formulated model makes use of the following
assumptions:

1. The primary damage is produced either (a) in the form of Fren-
kel pair, that is, only single vacancies and self-interstitial atoms
(SIAs); or (b) Frenkel pair plus small clusters of either vacancies
or SIAs typical of those generated by displacement cascades.

2. The point defects diffuse by three-dimensional (3-D) random
walk.

3. The nucleation of vacancy and SIA clusters proceeds via a homo-
geneous mechanism, that is due to monodefect + monode-
fect = di-defect in the case of 1(a), or by both homogeneous
and in-cascade clustering mechanisms at the same time for 1(b).

4. Vacancy clusters are treated as spherical voids that are neutral
sinks for point defects; thermal emission of vacancies is deter-
mined by a size-dependent binding energy.

5. SIA clusters are treated as 3-D spherical clusters, with a prefer-
ence (bias) for absorbing SIAs relative to vacancies, and are sta-
ble against thermal SIA emission;
OKMC

Stochastic
Inferred from possible processes and reaction rates
Full spatial dependence
Discrete in time and space
Inferred from fate of point defects
Computationally limited by simulation cell size, that is: Nmin P 1/(box volume)

gion MFRT models to account for spatial dependence in a limited way and the use of
e formation.
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6. Edge dislocations are a fixed matrix sink with a preference
(bias) for SIAs that is the same as the SIA clusters; and

7. The vacancy and SIA clusters are immobile.

These assumptions are only used for simplification and do not
lead to any restrictions in comparing the two methods. For exam-
ple, a planar loop is a better approximation of SIA cluster geometry.
The spherical geometry was used here to simplify the MFRT-OKMC
comparison. However, to provide a self-contained description of
the MFRT sink strengths, the relevant equations are first presented
for both planar and spherical sinks. Neglecting the mobility of
small vacancy of SIA clusters will increase the density of clusters
in both models. Higher cluster densities improve the statistics in
the OKMC model as will be discussed below.

2.1. Mean field rate theory model

2.1.1. Form of master equation
Based on the assumptions listed above, the SDF of voids, fvcl(x,t),

and SIA clusters, ficl(x,t), can be described by the following pair of
master equations, in which x is the number of point defects in
the cluster [3,10]:

ofvclðx; tÞ
ot

¼ KvclðxÞ þ Jvclðx� 1; tÞ � Jvclðx; tÞ ð1aÞ

oficlðx; tÞ
ot

¼ KiclðxÞ þ Jiclðx� 1; tÞ � Jiclðx; tÞ; ð1bÞ
X1
x¼2

xKvclðxÞ ¼ evclGNRTð1� erÞ;
X1
x¼2

xKiclðxÞ ¼ eiclGNRTð1� erÞ: ð1cÞ

The Kvcl(x), Kicl(x) are the rates of in-cascade generation of voids and
SIA loops, respectively, er is the fraction of Frenkel pair that recom-
bines during the cascade cooling; evcl, eicl are the in-cascade cluster-
ing fractions for vacancies and SIAs, respectively; GNRT is the NRT
Frenkel pair generation rate; and Jvcl(x,t), Jicl(x,t) are the void and
SIA loop fluxes in cluster size space, respectively:

Jvclðx; tÞ ¼ Pvclðx; tÞfvclðx; tÞ � Qvclðxþ 1; tÞfvclðxþ 1; tÞ; ð2aÞ
Jiclðx; tÞ ¼ Piclðx; tÞficlðx; tÞ � Q iclðxþ 1; tÞficlðxþ 1; tÞ: ð2bÞ

In Eqs. (2), Pvcl(x,t) and Picl(x,t) are the rates of vacancy absorption by
a void and SIA absorption by a SIA cluster, respectively; Qvcl(x,t) is
the sum of the rates of SIA absorption and vacancy emission from
a void, and Qicl(x,t) the rate of vacancy absorption by a SIA cluster.
These rates depend on the cluster concentration and the diffusion
properties of the mobile defects, that is, vacancies and SIAs. In the
case of 3-D diffusion of point defects to voids and SIA loops, the
rates take the following form [3,10]:

PvclðxÞ ¼ wvclx1=3DvCvðtÞ; ð3aÞ
QvclðxÞ ¼ wvclx1=3½DiCi þ Dv expð�Eb

vðxÞ=kTÞ� ¼ Q i
vclðxÞ þ Qv

vclðxÞ;
ð3bÞ

PiclðxÞ ¼ Zl
iwiclx1=2DiCiðtÞ; ð4aÞ

Q iclðxÞ ¼ Zl
vwiclx1=2DvCvðtÞ; ð4bÞ

wvcl ¼
48p2

X2

� �1=3

;wicl ¼
4p
Xb

� �1=2

: ð5Þ

Ci,v(t) and Di,v are the concentrations and diffusion coefficients,
respectively, of vacancies (subscript v) and SIAs (subscript i), Zl

v ; Z
l
i

are the dislocation loop capture efficiencies for vacancies and SIAs,
Eb

vðxÞ is the binding energy of a vacancy to a vacancy cluster of size
x, kB is Boltzmann’s constant, T is the absolute temperature, X is the
atomic volume, and b is the magnitude of the SIA loop Burgers vec-
tor. For the case in which the dislocation loops are treated as 3-D
clusters, which is used in the OKMC calculations, the parameter wicl
has to be replaced by wvcl and x1/2 replaced by x1/3 in Eqs. (4a) and
(4b).

Note that if the SDFs described by Eqs. (1a) and (1b) are written
in x-space, the cluster densities are dimensionless. That is, the total

density of clusters, Nvcl;icl ¼
P1
x¼2

fvcl;iclðxÞ, has the units [1/atom]. The

capture efficiencies used in Eqs. (3) and (4) have dimensions of
[m�2], and the cluster sink strengths, which are given by

k2
vcl ¼

X1
x¼2

PvclðxÞfvclðxÞ � wvcl

X1
x¼2

x1=3fvclðxÞ; ð6aÞ

k2
iclðv;iÞ ¼

X1
x¼2

Piclðv;iÞðxÞficlðxÞ � Zicl
v;iwicl

X1
x¼2

x1=2ficlðxÞ; ð6bÞ

also have the dimensionality of [m�2]. For the purpose of comparing
the results obtained by the MFRT and OKMC techniques, it will be
useful to show that the sink strengths given by Eqs. (6) are equiva-
lent to those that are normally used in the mean size approximation
in MFRT models:

k2
vcl ¼ 4p < Rvcl > Nvcl; ð7aÞ

k2
iclðv;iÞ ¼ 2pZicl

v;i < Ricl > Nicl; ð7bÞ

which describe damage accumulation in the form of planar and
spherical sinks using the loop capture efficiency for vacancies and
interstitials, Zicl

v;i, the mean cluster radii <Rvcl> and <Ricl>, and the cor-
responding total number densities Nvcl and Nicl with units of m and
m�3, respectively. To show this, the SDF can be calculated in the do-
main where the size of a cluster is defined by its radius, r, instead of
x. The SDFs can be calculated by taking into account that a sum of
the SDF over all sizes in any phase space used for the ME has to
be equal to the total number of clusters, Ntot. Replacing the sums
with integrals, the total number density of the clusters in the case
under consideration may be written as

Ntot ¼
Z 1

x¼2
f ðxÞdx �

Z 1

R¼Rmin

f ðRÞdR: ð8Þ

The two integrals in Eq. (8) can be equal to each other if

f ðxÞdx ¼ f ðRÞdR: ð9Þ

Taking into account that the radii of voids, Rvcl, and loops, Ricl, and
the total number of defects in the clusters, xvcl, xicl, are related to
each other as follows

4p
3

R3
vcl ¼ xvclX;pR2

iclb ¼ xiclX; ð10Þ

and using Eq. (9) the functions fvcl(Rvcl) and ficl(Ricl) can be easily
calculated

fvclðRvclÞ ¼ fvclðxÞ
36p
X

� �1=3

x2=3;

ficlðRiclÞ ¼ ficlðxÞ
4pb
X

� �1=2

x1=2: ð11Þ

Note that dimensionality of the functions fvclðRvÞ; ficlðRiÞ is 1
m

1
atom

� �
On the other hand the SDFs in r-space are normally presented as
a number of clusters per unit volume. This can be obtained by divid-
ing the right-hand sides of Eqs. (11) by the atomic volume, X, i.e.,
Fvcl;iclðRvcl;iclÞ ¼ 1

X fvcl;iclðRvcl;iclÞ. Here the capital F is used to distinguish
the SDFs with dimensions (m�4) from the SDFs fvðRvÞ; fiðRiÞ. Using
Eqs. (10) and (11) and replacing the sums in Eq. (6) by the corre-
sponding integrals one can easily find that

k2
vcl ¼

48p2

X2

� �1=3 Z 1

x¼2
x1=3fvclðxÞdx

¼ 4p
Z 1

Rvcl;min

RvclFvclðRvclÞdRvcl � 4p < Rvcl > Nvcl; ð12aÞ
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k2
iclðv;iÞ ¼ Zicl

v ;i
4p
Xb

� �1=2 Z 1

x¼2
x1=2ficlðxÞ

¼ 2pZicl
v;i

Z 1

Ri;min

RiclFiclðRiclÞdRicl � 2pZicl
v;i < Ricl > Nicl: ð12bÞ

where

hRvcli ¼
R1

Rv ;min
RvclFvclðRvclÞdRvclR1

Rv ;min
FvclðRvclÞdRvcl

hRicli ¼
R1

Ri;min
RiclFiclðRiclÞdRiclR1

Ri;min
FiclðRiclÞdRicl

: ð13Þ

Although the integral of the SDFs shown in Eq. (7) has the same va-
lue for either phase space, the difference in dimensionality means
the two SDF have quite different shapes in r- or x-space. These
two are compared in Fig. 1, where the void SDFs obtained using
the MFRT for a specific case are plotted in both r- and x-space.
Although use of the x-space description may be more convenient
for the purpose of calculations, the r-space SDF is more appropriate
for comparing with experimental observations such as TEM
measurements.

2.1.2. Initial and boundary conditions
The initial and boundary conditions for void and SIA loop SDFs,

and the point defect concentrations are described as follows:

fvclðx; t ¼ 0Þ ¼ Cv0dðx� 1Þ; f iclðx; t ¼ 0Þ ¼ 0; ðx P 1Þ; ð14aÞ
fvclðx ¼ 1; tÞ ¼ CvðtÞ; f iclðx ¼ 1; tÞ ¼ CiðtÞ; ð14bÞ
fvclðx ¼ 1; tÞ ¼ ficlðx ¼ 1; tÞ ¼ 0; ð14cÞ
Cvðt ¼ 0Þ ¼ Cv0Ciðt ¼ 0Þ ¼ 0; ð14dÞ

where Cv0exp � Ef
v

kBT

� �
is the thermal equilibrium vacancy concentra-

tion, Ef
v is the vacancy formation energy, and d(x) is the Kronneker

delta.

2.1.3. Equations for point defect concentrations
To complete the system of equations, we must add equations

for the evolution of the vacancies, Cv, and SIAs, Ci, which are given
by [5]:
Fig. 1. Void size distribution function calculated for the case of E2v = 0.3: fvcl(x) in
phase space x (x = number of vacancies), and Fvcl(d) in phase space d (d = void
diameter).
dCvðtÞ
dt

¼GNRTð1�erÞð1� evclÞ

� lRDiCiðtÞCvðtÞþZd
vqDvðCvðtÞ�Cv0Þþ

Xx¼1
x¼2

PiclðxÞficlðx; tÞ
" #

�½Pvclð1Þfvclð1; tÞ�ðQv
vclð2ÞþQ i

vclðxÞÞfvclð2; tÞ�

�
Xx¼1
x¼1

ðPvclðxÞfvclðx;tÞ�Qv
vclðxþ1Þfvclðxþ1; tÞÞ;

ð15Þ

dCiðtÞ
dt

¼ GNRTð1� erÞð1� eiclÞ

� lRDiCiðtÞCvðtÞ þ Zd
i qDiCi þ

Xx¼1
x¼1

PiclðxÞficlðx; tÞ
" #

� ½Piclð1Þficlð1; tÞ � Q iclð2Þficlð2; tÞ�

�
Xx¼1
x¼1

Qi
vclðxþ 1Þfvclðxþ 1; tÞ; ð16Þ

where GNRT is the point defect generation rate, lR is the recombina-
tion coefficient, q is the dislocation density, and Zd

v ; Z
d
i are the dislo-

cation capture efficiencies for vacancies and SIAs, respectively (here
Zd

v is set equal to 1.0). The first term on the right-hand side of Eqs.
(15) and (16) is the generation rate of mobile point defects, and the
second term includes the point defect annihilation rates by recom-
bination, reactions, and absorption by dislocations, and the SIA clus-
ters. The third term accounts for the fact that a reaction between
mobile monomers eliminates both of them, and reactions between
mobile monomers and a dimer of the opposite species generates a
mobile monomer of the same species as the dimer, i.e., vacancy +
di-interstitial = interstitial. The last term is the point defect capture
rate by voids.

Eqs. (1)–(4), (15) and (16) comprise a large system of coupled
nonlinear differential equations and, in the general case, can be
only solved by numerical methods. For realistic sizes of voids and
SIA clusters, the system size can exceed 106 equations, requiring
that practicable solution of this system will require some grouping
procedure to minimize the number of equations. This amounts to
approximating the continuous SDF as a histogram [2–7]. In the
present work the grouping method developed by Golubov et al.
[5] was used.

2.2. Object kinetic Monte Carlo model

2.2.1. Thermally activated processes
The general features of the OKMC code used in the present

work, LAKIMOCA, are described in Ref. [11]. The model treats radi-
ation-produced defects (vacancies, SIAs, and clusters thereof) as
objects that have specific reaction volumes and that are located
in particular positions in the simulation box. Each object can mi-
grate and participate in a series of predefined reactions. The prob-
abilities for physical transition mechanisms, which are basically
migration jumps and emission from larger defects or from traps,
are calculated in terms of Arrhenius frequencies for thermally acti-

vated events, Ci ¼ mi exp � Ea;i
kBT

� �
, where mi is the attempt frequency

(prefactor) for event i, and Ea,i is the corresponding activation en-
ergy. The Monte Carlo algorithm [8] is used at each step to select
the event that is going to take place, based on the corresponding
probabilities. After a certain event is chosen, time is increased
according to the residence time algorithm,

Ds ¼
PNth

e

i¼1
Ci þ

PNext
e

j¼1
Pj

 !�1

Ref. [12], where the Pj are the probabilities

of external events, such as the appearance of a cascade or of iso-
lated Frenkel pair produced by impinging particles. The choice of



Fig. 2. Comparison of vacancy cluster sink strength obtained in OKMC simulations
(discrete points) and the analytical expression applied in the MFRT (lines). The
dashed line is the lowest order sink strength, which is valid for small sink volume
fractions, and the solid line includes the first-order sink strength correction factor
[14].
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this expression is in the long-term equivalent to choosing Ds0 = �ln
R*Ds, where R is a random number between 0 and 1 Ref. [13].

2.2.2. Sink Strengths in the OKMC
In addition, the OKMC model includes non-thermally activated

events, such as the annihilation of a defect after encountering
either a defect of opposite nature (i.e., a SIA encountering a va-
cancy) or a sink, as well aggregation, either by adding a point-de-
fect to a cluster or by forming a complex between a defect and a
trap for it. These events occur only on the basis of geometrical con-
siderations (overlap of reaction volumes) and do not participate in
defining the progression of time. It is possible to introduce differ-
ent classes of immobile traps and sinks, characterized by specific
geometrical shapes (spheres, infinite cylinders, surfaces etc.) suit-
able for mimicking voids and other defects such as dislocations
and grain boundaries.

In the present work, the OKMC technique is used to simulate
damage accumulation according to the model formulated above.
A bcc iron lattice containing edge dislocations is simulated, with
the evolution of two types of point defect clusters, voids and SIA
loops. To simplify the calculations, both types of defect clusters
are treated as spherical absorbers. The only difference between
the vacancy clusters and the SIA loops is that the first ones are de-
scribed as neutral sinks, whereas the second are considered to be
biased, i.e. having preference for absorption of SIAs. Thus, instead
of using Eq. (6b), the sink strength of the SIA clusters is given by

k2
iclðv;iÞ ¼ Zicl

v;iwv
X1
x¼2

x1=3fiðxÞ � 4pZicl
v;i < Ri > NiðZicl

v ¼ 1; Zicl
i > 1Þ:

ð17Þ

The bias of the SIA clusters is equal to
pl ¼ ðZ

icl
i � Zicl

v Þ=Zicl
v � Zicl

i � 1 and in the following calculations is
chosen to be equal of that for the dislocations, that is, Zicl

i ¼ Zd
i . Note

that such an approach for the shape of SIA clusters in the following
calculations is quite reasonable because the sink strengths of small
spherical clusters and that of dislocation loops are similar when
the cluster size is not large. Using Eqs. (6) one can find that the ra-
tio of the sink strengths is given by

ðk2
iclÞspherical

ðk2
iclÞloop

� ðp33=2Þ1=6x�1=6 ¼ 1:592x�1=6; ð18Þ

that is, it only weakly depends on the number of defects in the clus-
ter (it varies within a factor of 2 when x varies in a range from 2 to
104). This size range matches well the calculations presented in this
work since the highest irradiation dose used in the calculations is
rather small (10�2 dpa).

When the sink strength of small clusters is accounted for in the
OKMC, a measurable difference is observed between the MFRT and
OKMC. This arises from the discrete spatial description of point de-
fect absorption in the OKMC. In the case of the MFRT, the equiva-
lent radius of a cluster containing any number of point defects
can be calculated using Eq. (10), and this radius determines the
sink strength, which is essentially the probability of the cluster
absorbing a mobile point defect in that model. However, in the
OKMC model, a cluster of X point defects occupies X lattice sites.
Point defect absorption occurs when a mobile point defect arrives
at an adjacent lattice site. For relatively large clusters the OKMC
and MFRT reaction probabilities or sink strengths are nearly the
same because the larger clusters are more nearly spherical. How-
ever, the equivalent radius given by Eq. (10) overestimates the
reaction rate for small clusters. This is illustrated in Fig. 2, in which
the sink strength obtained by the two models is shown for vacancy
clusters containing up to 500 vacancies (equivalent radius of
1.12 nm). Note that the acronym RT in this and subsequent figures
is an abbreviation for MFRT. The discrete points were obtained by
OKMC simulations in which point defect absorption was computed
for vacancy clusters of the indicated size. The lines indicate MFRT
sink strengths computed using the equivalent radius from
Eq. (10). The dashed line is obtained using the lowest order expres-
sion for the sink strength, Eq. (7a), and the solid line is obtained
when the first-order correction term is included to account for
multiple sink effects [14]. This multiple sink correction is implicitly
accounted for in the OKMC method. The impact of this difference in
sink strength will be discussed further when the results are pre-
sented in Section 3.

More than one approach could be followed to simulate the sink
strength of dislocations in OKMC. One possible method is the direct
introduction of an absorbing cylinder of a certain length, Ld, corre-
sponding to the desired dislocation density, q, and with specified
capture efficiencies for point defects. In this case, one may expect
to reproduce the sink strength given in Eqs. (15) and (16) with
the efficiencies Zd

v ;i ¼ 2p
ln ðkRcv ;ciÞ�1
h i

, which leads to a dislocation
bias to be equal to

p ¼ Zd
i � Zd

v

Zd
v

¼ lnðRdi=RdvÞ
ln ðkRdiÞ�1
h i ; ð19Þ

where rdi, rdv are the cylinder capture radii for SIAs and vacancies,
respectively, and k ¼

ffiffiffiffiffi
k2

p
(where k2 is the total sink strength in

the crystal). This approach appears relatively intuitive and straight-
forward, but this is not the case. The first problem arises with
choosing the cylinder length. To simulate a given dislocation den-
sity, q, the length of the cylinder has to be taken to be equal to Ld

= qVbox, which may be too small or too large to fit conveniently in
the simulation box, Lbox ¼ V1=3

box. In addition, the dislocation density
can vary by several orders of magnitude whereas the maximum
box size is essentially fixed by computational limitations. As a re-
sult, such a cylinder may have its ends inside the simulation box
and thus cannot reproduce the actual cylindrical symmetry of a dis-
location. The impact of this on the dislocation sink strength requires
further investigation, which is beyond the scope of the present
work, and is not directly relevant to the comparison of the MFRT
and OKMC methods. A second issue arises from the fact that the dis-
location sink strength and corresponding bias depends on the total
sink strength, k2, see Eq. (19), which changes during the irradiation.
Because of these issues, the alternate approach discussed in the
next paragraph was used to simulate the dislocation sink density.
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One way to avoid these complications is to simulate the disloca-
tion sink by introducing another class of spherical absorber, which
maintains the two main properties of dislocations as a sink for
point defects: (a) a preference for SIA absorption, that is, maintain
a constant dislocation bias and (b) maintain constant sink strength
during irradiation. This may be achieved by introducing additional
spherical absorbers with fixed density and size as follows:

k2
vd ¼ 4pRd

vNd � q; ð20aÞ
k2

id ¼ 4pRd
i Nd; ðRd

i > Rd
vÞ: ð20bÞ

Thus choosing a specific capture radius for vacancies, Rd
v , the density

of the absorbers, Nd, can be calculated from the first Eq. (25),
Nd ¼ q

4pRd
v
. The bias in the case is equal to

p ¼ k2
i � k2

v

k2
v

¼ Rd
i

Rd
v

� 1; ð21Þ

i.e., it depends on the ratio of Rd
i =Rd

v only. Taking the ratio Rd
i =Rd

v to
be equal to Zd

i ; one may expect that Eqs. (25) will reproduce the sink
strength of dislocations with respect to their ability to capture point
defects. Thus, Eqs. (25) and (21) permit calculating the absorber
properties of dislocation at any given dislocation density and bias.
The spherical absorbers used to simulate dislocations are randomly
distributed in the simulation box, with capture radii of
Rd

v ¼ 0:4 nm;Rd
i ¼ 0:48 nm for vacancies and SIAs, respectively.

An OKMC simulation cell size of 300 � 300 � 300 lattice param-
eters was used in all the simulations discussed here. Given the lat-
tice parameter of a-Fe (see Table 2), this leads to a volume equal to
6.423 � 10�22 m3. As a result, the minimum density of any given
object that can be obtained in the OKMC simulations is
1.56 � 1021 m�3, that is, one per box volume. The impact of this
limitation will be discussed below.

2.3. Material and irradiation parameters

To explore a range of irradiation phenomena and to help isolate
the effects of different mechanisms, two types of irradiation condi-
tions were considered:

1. Pure Frenkel pair production only, which is similar to electron
irradiation, and
Table 2
Material and irradiation parameters used in calculations

Temperature, T
Lattice parameter, a
Atomic volume, X = a3/2
Number of atoms in unit volume, N = 1/X
Box volume of a cube of size 300a, Vbox

Number of atoms in the box, Nbox = Vbox/X
Number density equivalent to one cluster in, Ncl = 1/Vbox

NRT displacement rate, GNRT

Cascade survival efficiency, (1�er)
Fraction of SIAs in cluster form, e (x = 2, 3, and 4)
Fraction of voids in cluster form, ev (x = 6)
Recombination coefficient, lR = 4p(rv + ri)/X, (rv + ri = 0.4466 nm)
Attempt frequency, m
Vacancy diffusion coefficient, Dv ¼ Dv0exp � Em

v
kT

� �
Preexponential, Dv0 ¼ 1

6 r2m r ¼
ffiffi
3
p

2 a
� �

Migration energy, Em
v

SIA diffusion coefficient, Di ¼ Di0exp � Em
i

kT

� �
Preexponential, Di0 ¼ 1

6 r2m
Migration energy, Em

i

Binding energy of di-vacancies, E2v

Capture efficiencies of dislocations and SIA clusters, Zicl
v ; Z

icl
i ; Z

d
v ; Z

d
i

Dislocation density, qd

Capture radii for ‘dislocation’ spherical absorbers, Rd
i ;R

d
v

2. Cascade damage production, typical of heavy ion or neutron
irradiation, in which 30% of the SIA and vacancies are produced
in small clusters. The SIA clusters are distributed as follows:
14% di-, 12% tri-, 4% tetra-interstitials, while all of the vacancy
clusters are initially of size six.

For the second case, two classes of cascade debris were consid-
ered in the OKMC simulations: (2a) normal cascades in which the
point defects and defect clusters were spatially correlated as ob-
served in atomistic simulations of cascade damage formation
[15], and (2b) special ‘random’ cascades in which the spatial corre-
lation was not preserved. Case (2b) is a better approximation of
how the damage production is simulated in the MFRT model. The
cascade efficiency, that is, the fraction of point defects that survive
after the cascade cooling phase, is taken to be 0.4 for the cases of
cascade damage production. When simulating Frenkel pair produc-
tion, the cascade efficiency is essentially 1.0, so the damage rate
was set to permit comparison with cascade damage results at the
same effective displacement rate.

The binding energy of a vacancy with a void of size x is de-
scribed using the capillarity model adjusted to a specific di-va-
cancy binding energy, E2v. The general expression for the vacancy
binding energy takes the following form:

Eb
vðxÞ ¼ Ef

v þ ðE2v � Ef
vÞ

x2=3 � ðx� 1Þ2=3

22=3 � 1

 !
: ð22Þ

The energy E2v can be treated as a variable parameter to permit
investigation of the stability of the vacancy clusters. A value of
0.2 eV was used in the OKMC and MFRT predictions presented be-
low. The SIA clusters are treated as thermally stable. The nominal
material and irradiation parameters are given in Table 2.

3. Results

A large number of figures will be presented to summarize the
primary results. A consistent color scheme has been applied in
each of the figures to aid the reader. The MFRT results are shown
as red curves, and the OKMC as black symbols or curves. Parame-
ters that were varied in the analysis are differentiated by different
types of lines. In some cases, two sets of OKMC results are shown at
a given dose. One is the instantaneous value at that dose, and the
373–523 K
0.2876 nm
1.189 � 10�29 m3

8.407 � 1028 m-3

6.423 � 10�22 m3

5.4 � 107

1.557 � 1021 m�3

4 � 10�7 to 4 � 10�5 dpa/s
0.40
0.30
0.30
4.72 � 1020 m�2

6.0 � 1012 s�1

6.02 � 10�8 m2/s
0.65 eV

6.02 � 10�8 m2/s
0.30 eV

0.2 eV
1.0, 1.20
3 � 1014 m�2

0.48 and 0.4 nm (p = 0.2)
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other is the average value obtained from the value at that dose and
values from the previous two timesteps and two subsequent time-
steps. The preceding four timesteps were included in average val-
ues reported at the final dose. This helps to demonstrate the
statistical nature of the OKMC results and permits results to be
shown when the instantaneous value is less than the minimum
of one per OKMC box volume. This minimum density is also indi-
cated in some of the figures by a horizontal dashed blue line. The
results presented include calculated values of vacancy and intersti-
tial concentrations, vacancy and SIA cluster densities, the total
number of vacancies and SIA accumulated in clusters, and the va-
cancy and SIA cluster size distributions. The net number of point
defects accumulated in clusters is significant because it represents
the volume change or swelling associated with the irradiation.

The simplest situation to simulate is that of only Frenkel pair
production, with vacancy and interstitial cluster formation occur-
ring only as a result of homogeneous nucleation. For this case,
the three different sink behavior possibilities were considered:

1. No fixed sinks, vacancy and interstitial clusters can form by
classical nucleation (diffusive encounters), the capture effi-
ciency of both cluster types for mobile monovacancies and
monointerstitials is the same, that is, there is no biased
absorption.

2. The same as in 1 above, but SIA clusters have 20% interstitial
bias; and

3. The same as in 2 above but the fixed (dislocation) sink with an
interstitial bias of 20% and a density of 3 � 1014 m�2 is included.

Of these three, the last one is certainly most physically repre-
sentative of the behavior expected in real materials. The use of
the other two was intended to be a tool for isolating the effect of
specific point defect/sink reactions to aid in the comparison and
evaluation of the two computational models.

The results of MFRT and OKMC simulations for these conditions
are shown in Figs. 3–7 for an irradiation temperature of 373 K and
an NRT displacement rate of 4 � 10�7 dpa/s. The dose dependence
of the vacancy concentration is shown in Fig. 3, where the expected
influence of the various sink structures can be seen. There is ini-
tially little difference between the biased and unbiased interstitial
clusters cases when point defect clusters are the only sink; the dif-
ference increases at higher doses when the cluster sink strength in-
creases. The addition of a biased dislocation sink increases the
vacancy concentration at the lowest doses due to increased parti-
Fig. 3. Vacancy concentration for the case of only Frenkel pair production and three
sink variants (see text).

Fig. 4. Dose dependence of vacancy and interstitial cluster density predicted by
MFRT and OKMC for three types of sink structures: (a) only point defect clusters, no
biased absorption; (b) same as (a) but interstitial clusters have 20% bias for SIA; and
(c) same as (b) but add fixed dislocation density with 20% bias for SIA.
tioning of vacancies and interstitials, but the concentration is re-
duced at higher doses due to a higher overall sink strength.

Although the trends are similar in both the OKMC and MFRT re-
sults, the vacancy concentration is consistently higher in the OKMC
simulations. This difference arises as a result of the differences in
the point defect cluster sink strength discussed above and illus-
trated in Fig. 2. The lattice-based sink strength obtained with the
OKMC is smaller than that from the continuum MFRT model in



Fig. 5. Vacancy cluster size distributions predicted by MFRT and OKMC for three
types of sink structures: (a) only point defect clusters, no biased absorption; (b)
same as (a) but interstitial clusters have 20% bias for SIA; and (c) same as (b) but
add fixed dislocation density with 20% bias for SIA.

Fig. 6. Interstitial cluster size distributions predicted by MFRT and OKMC for the
same three types of sink structures as in Fig. 5.
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the size range of most of the clusters that are generated. This re-
duced sink strength leads to a higher concentration of free vacan-
cies. Note that difference between the two methods is reduced
when the dislocation sink is added because the significance of
the cluster sink strength is reduced in this case.

The dose dependence of the vacancy and SIA cluster densities
are shown in Fig. 4 for the three sink variants. The MFRT and OKMC
predictions of the vacancy clusters are in good agreement for each
case. However, the MFRT results indicate that the interstitial clus-
ter density is near or below the one defect per box value which is
indicated by the dashed blue line. As a result, the OKMC results are
quite variable, ranging between 0 and about 4 per box
(�6 � 1021 m�3). Limited statistics are also responsible for the
irregular time dependence observed in the OKMC curves for va-
cancy clusters. The simulation cell generally contains less than
ten vacancy clusters even though the displacement rate is rela-
tively high, and the temperature quite low.

The impact of limited statistics is even more clearly observed in
the void size distributions shown in Fig. 5. The irradiation and sink
conditions remain the same as in Fig. 4, and the density of one de-
fect cluster per OKMC box is indicated in parts (a) and (b). The void
SDF obtained from the MFRT model is smooth and continuous for
each of the sink conditions shown in Fig. 5(a)–(c). However, the
density at any one size is less than one void per unit OKMC box vol-
ume. Therefore, the instantaneous density predicted by the OKMC
model tends to be either zero or one (or occasionally two) per box
volume. Averaging the OKMC results over five timesteps begins to
give the appearance of a size distribution, but the meaning of these
values would be difficult to interpret in the absence of the MFRT re-
sults and the statistical significance is questionable since they rep-
resent only one or two voids. The same situation is observed for the
interstitial SDF in Fig. 6. The MFRT model produces a smooth SDF for
each of the three sink conditions, with the details appropriately
dependent on the defect partitioning balance induced by the neu-
tral or biased SIA clusters, and the overall density reduced by the
addition of a dominant dislocation sink. At each size, the equivalent
density is much less than one per OKMC box volume. As a result, the
corresponding OKMC simulations can not reproduce a reasonable
approximation of either the absolute SDF, or the variation with sink
conditions. Averaged OKMC points are clustered at small sizes with
a density between 0.1 and 1.0 per box volume.

The number of defects accumulated in point defect clusters is
shown Fig. 7 as a function of dose for the three sink conditions. This
value is significant because it represents a net change in the irradi-
ated microstructure that can ultimately be experimentally verified.
For example, volumetric swelling is directly related to accumula-
tion of vacancies. There is good agreement between the MFRT
and OKMC predictions of vacancy accumulation for all three cases,
although the dose dependence of the OKMC results are irregular in
Fig. 7(a) and (b) due to the vacancy cluster density being only
slightly greater than the one per box value (see Fig. 4). As they
should, the total number of vacancies and interstitials accumulated
in clusters approach the same value as the dose increases in
Fig. 7(a) and (b). SIA accumulation is also in reasonable agreement
except for the third case in Fig. 7(c), where the interstitial cluster
density is less than one per OKMC box volume (Fig. 4).



Fig. 7. Number of vacancies and interstitials accumulated in clusters predicted by
MFRT and OKMC for the same three types of sink structures as in Figs. 5 and 6.

R.E. Stoller et al. / Journal of Nuclear Materials 382 (2008) 77–90 85
The results shown in Figs. 8 and 9 illustrate the effect of irradi-
ation temperature at a relatively high damage rate of 4 � 10�5 dpa/
s. The vacancy concentration is shown in Fig. 8(a) and the void
number density in Fig. 8(b). Fig. 9(a) shows the number of vacan-
cies accumulated in clusters, and the vacancy cluster size distribu-
tion is shown in Fig. 9(b) at two doses for a temperature of 100 �C.
The results in Figs. 8 and 9(a) and (b) were obtained for the sink
conditions that include an interstitial bias for the interstitial clus-
ters, but no fixed sink. The fixed dislocation sink is added in
Fig. 9(b). The MFRT and OKMC results are in reasonable agreement,
with the vacancy concentration slightly higher for the OKMC mod-
el because of the difference in the vacancy cluster sink strength
discussed above. For temperatures greater than about 200 �C, the
predictions of the OKMC model show considerable scatter due to
the limited number of vacancies and vacancy clusters in the simu-
lation cell. In fact, these results provide a useful measure of the
number of objects required for the OKMC model to provide an ade-
quate representation of the MFRT results. For example, in Fig. 8(a),
there is considerable scatter in the value of the vacancy concentra-
tion obtained from the OKMC model at 250 �C. At this temperature,
the number of vacancies in the simulation cell is about 100. At the
higher temperature of 300 �C, where there are about 50 vacancies
in the simulation cell, the scatter in the vacancy concentration is
±50%. The vacancy cluster number density falls below one per
OKMC cell volume for temperatures greater than 200 �C. The con-
ditions for the size distribution comparison shown in Fig. 9(b) were
chosen to have a high cluster density, that is, T = 100 �C and with
the biased dislocation sink included. For this case, the MFRT and
OKMC predictions are similar at both 0.005 and 0.01 dpa.

Figs. 10–12 illustrate the impact of atomic displacement rate at
a temperature of 100 �C. Results are shown for three displacement
rates, 4 � 10�7, 4 � 10�6, and 4 � 10�5 dpa/s. Values of the vacancy
concentration obtained from the two models are in good agree-
ment at each damage rate. However, even at these relatively high
displacement rates, the interstitial concentration remains well be-
low the density, which is equivalent to one object in the OKMC
simulation cell. Therefore, it is not possible to obtain an accurate
value for the interstitial concentration from the OKMC model. This
point is further demonstrated by the point defect cluster densities
shown in Fig. 11. Although the two models predict similar values
for the void density, substantial fluctuations are observed in the
OKMC results as long as the number of voids in the simulation cell
is less than a few hundred. Only for the highest displacement rate
of 4 � 10�5 dpa/s is the number of interstitial clusters in the OKMC
cell greater than one. Similarly, Fig. 12 indicates that it is only at
this very high displacement rate that the void size distribution
function obtained from the OKMC contains enough objects to give
a good representation of the SDF obtained from the MFRT
(Fig. 12(c)).

The two sets of simulations involving cascade damage condi-
tions are summarized in Figs. 13–16. The conditions chosen for this
comparison were an NRT displacement rate of 1 � 10�5 dpa/s, cas-
cade efficiency of 0.4, temperature of 200 �C, and with the most
complete sink structure. The cascades used in the OKMC simula-
tions shown in Figs. 13 and 14 are what might be termed realistic
cascades, that is, the spatial correlation of the point defects and
small clusters is typical of a cascade obtained from molecular
dynamics simulations. This spatial correlation was removed in
the ‘cascades’ used to obtain the OKMC results shown in Figs. 15
and 16. The same MFRT predictions are used for comparison in
both cases.

Although in-cascade production of point defect clusters in-
creases the cluster density, raising the temperature to 200 �C re-
duces the point defect concentrations. As a result, the agreement
between the OKMC and MFRT is relatively poor for the vacancy
concentration in Fig. 13(a); and the interstitial density is too low
to be accurately modeled using OKMC. Values for the total point
defect cluster densities are in relatively good agreement in
Fig. 13(b) because a sufficiently large number of clusters are
formed, particularly for voids. Similarly, the number of vacancies
and interstitials accumulated in clusters is in fair agreement as
seen in Fig. 14(a). However, an additional discrepancy between
the MFRT and OKMC results exists. The number of interstitials
accumulated in SIA clusters should approach the number of vacan-
cies in voids at the higher doses, with a slight excess in vacancy



Fig. 8. Influence of irradiation temperature on MFRT and OKMC predictions of (a) vacancy concentration and (b) vacancy cluster density.

Fig. 9. Influence of irradiation temperature on MFRT and OKMC predictions of (a) vacancies accumulated in clusters and (b) vacancy cluster size distribution.

Fig. 10. Influence of atomic displacement rate on point defect concentrations
predicted by MFRT and OKMC at 100 �C.
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accumulation due to the dislocation-interstitial bias. This is the
case for the MFRT curves in Fig. 14(a), but the vacancy and intersti-
tial curves are diverging for the OKMC model. Moreover, an excess
interstitial accumulation is observed for the OKMC case. This dif-
ference between the two models can be understood by referring
to the cluster size distributions shown in Fig. 14(b). The MFRT
and OKMC results are in fair agreement only at small sizes where
a large number of clusters exist. However, the OKMC model can
not produce the smooth distribution seen in the MFRT predictions
at larger sizes because the density of large clusters is too low.
Although the total number of clusters of both types exceeds the
one per box volume criterion (Fig. 13(b)), the number at any given
size is much lower. Spurious formation of large SIA and vacancy
clusters results from the fluctuations in the OKMC results, and this
leads to the higher level of accumulation predicted by the OKMC
model shown in Fig. 14(a). The discrepancy is greater for the SIA
clusters because the MFRT model indicates that the cluster density
should be essentially zero for SIA clusters larger than about 75.

Although the simulated cascades used in the OKMC model to
produce the results shown in Figs. 15 and 16 are less representa-
tive of real atomic displacement cascades, they provide a better
simulation of how primary damage production is modeled in the
MFRT. Therefore, it is not surprising that the agreement between
the two models is somewhat improved for this case, which can
be confirmed by a careful comparison of Fig. 13 with Fig. 15 and
Fig. 14 with Fig. 16. Recall that the red MFRT curves are the same
in both sets of figures. For example, the OKMC vacancy cluster den-
sity in Fig. 15(b) is closer to the MFRT result than the correspond-
ing curve in Fig. 13(b), and the agreement for the number of
vacancies in clusters is improved between Figs. 14(a) and 16(a).
The excess interstitial accumulation observed for the OKMC model
in Fig. 14(a) is somewhat worse with the ‘random’ cascades in



Fig. 11. Influence of atomic displacement rate on MFRT and OKMC predictions of
vacancy and SIA cluster density at 100 �C for three types of sink structures: (a) only
point defect clusters, no biased absorption; (b) same as (a) but interstitial clusters
have 20% bias for SIA; and (c) same as (b) but add fixed dislocation density with 20%
bias for SIA.

Fig. 12. Influence of atomic displacement rate on MFRT and OKMC predictions of
vacancy cluster size distribution at 100 �C for the same three types of sink
structures as in Fig. 11.
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Fig. 16(a), largely due the improvement (reduction) in the number
of vacancies in clusters. There is little improvement in the vacancy
concentration (Figs. 13(a) vs. 15(a)), no doubt due to the limited
statistics in the OKMC results.

4. Discussion

The results presented in the preceding section have highlighted
both the similarities and differences inherent in the reaction MFRT
and OKMC methods. They confirm that the two methods will give
nearly identical results if the problem to be solved is well posed.
However, because of the inherent differences in the methods listed
in Table 1 and discussed above, specifying the problem in such a
way as to obtain the desired equivalence is not a trivial exercise.
For example, if small point defect clusters are described in a ‘stan-
dard’ way in both approaches, the inherent difference between the
OKMC lattice-based reaction rates and the MFRT continuum sink
strengths will lead to a systematic difference in the results. The
OKMC reaction rates lead to a lower effective sink strength, which
increases the concentration of mono-defects in the matrix. The sig-
nificance of this difference depends on the details of the problem. It
is greater for conditions in which small defect clusters are more



Fig. 13. Dose dependence of MFRT and OKMC predictions of (a) point defect concentrations and (b) point defect cluster densities, under cascade damage production with
interstitial-biased SIA clusters and fixed dislocation sink. Dashed blue lines indicate one defect in OKMC box.

Fig. 14. MFRT and OKMC predictions of (a) point defects accumulated in clusters and (b) cluster size distributions, under cascade damage production with interstitial-biased
SIA clusters and fixed dislocation sink. Dashed blue line in (b) indicates one defect in OKMC box.

Fig. 15. Dose dependence of MFRT and OKMC predictions of (a) point defect concentrations and (b) point defect cluster densities. Cascade damage production in which
defects have no spatial correlation, sink structure as in Figs. 13 and 14. Dashed blue lines indicate one defect in OKMC box.

88 R.E. Stoller et al. / Journal of Nuclear Materials 382 (2008) 77–90
dominant, for example, electron irradiation of a material with a
low dislocation density. Lower temperatures and higher damage
rates would also increase its significance.
It may be argued that the OKMC reaction rates are more accu-
rate for the small clusters because a collection of only a few vacan-
cies may be poorly described by the spherical approximation used



Fig. 16. MFRT and OKMC predictions of (a) point defects accumulated in clusters and (b) cluster size distributions. Cascade damage production in which defects have no
spatial correlation, sink structure as in Figs. 13 and 14. Horizontal dashed blue line in (b) indicates one defect in OKMC box.
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in the MFRT sink strengths. Similarly, the ability to accurately in-
clude the spatial correlation of the defects produced by displace-
ment cascades is an advantage of the OKMC relative to the MFRT.
These differences could be accounted for in the MFRT by using
the results of specifically designed OKMC simulations to provide
a set of correction factors that could be applied in the MFRT mod-
els. For example, information such as that shown in Fig. 2 could be
used to correct the MFRT sink strengths for small point defect clus-
ters. Monte Carlo simulations could also be used to determine the
degree of additional point defect recombination that occurs due to
spatial correlations in-cascade debris [16], and a correction could
be applied to the MFRT damage production rate.

The primary limitations of the OKMC model are related to com-
putational issues. Even with modern computers, the maximum
simulation cell size and the maximum dose (typically much less
than 1 dpa) that can be simulated are limited. Increasing either
of these parameters necessitates a reduction in the other. The lim-
ited cell size directly specifies the minimum density of any type of
object in the system; no density lower than one object per simula-
tion cell volume can be simulated. Because defect densities are a
strong function of irradiation temperature and damage rate, the
density limit implies limits on the irradiation conditions that can
be simulated. For a given box size, there will be a combination of
maximum temperature and minimum dose rate for which the
OKMC model can be used. However, an object density of one per
box volume is not a sufficient criterion for successful use of the
OKMC. Because of the statistical nature of Monte Carlo methods,
there should be enough objects of each type to ensure the statisti-
cal significance of the results. The results shown in Fig. 8(a) provide
the clearest example. Significant fluctuations in the vacancy con-
centration were observed even when there were as many as 300
vacancies in the simulation cell, partly because there were less
than 10 vacancy clusters to act as sinks. Under conditions in which
nucleation of extended defects is difficult and proceeds primarily
on the basis of true fluctuations (high temperature and low dam-
age rate), the OKMC method is unlikely to predict accurate nucle-
ation rates if a statistically significant number of the nucleating
species is not present (see the discussion related to Figs. 13–16).

In contrast with the OKMC, even very detailed MFRT models can
simulate microstructural evolution for doses up 100 dpa or greater
in clock times that are relatively short. Within the context of the
effective medium, essentially any defect density can be simulated.
Overall, the agreement between the two methods is best for irradi-
ation conditions that produce a high density of defects (lower tem-
perature and higher displacement rate) and for materials that have
a relatively high density of fixed sinks such as dislocations. The
higher dislocation density reduces the significance of differences
associated with the sink strength of small defect clusters and dif-
ferences that may arise between the number of point defect clus-
ters that are formed.
5. Summary

This study has verified the ability of alternate approaches based
on the reaction rate theory, MFRT and OKMC to obtain comparable
results in well-posed simulations that are directly relevant to mod-
eling radiation-induced microstructural evolution. It has also
helped to define irradiation regimes in which it may be inappropri-
ate to use the OKMC methods. In particular, current computational
limitations on the OKMC simulation cell size imply that it may be
difficult to use the OKMC to simulate some aspects of microstruc-
tural evolution at the modest displacement rates and elevated
temperatures relevant to many reactor components. Expected
advances in computing will expand the range of use for OKMC
models, but this progress may occur slowly because orders of
magnitude in defect density are required. However, the OKMC does
a better job of accounting for spatial correlations which can influ-
ence point defect reaction rates with small defect clusters and that
modify the primary damage source term under cascade damage
conditions. As such, one immediate application of OKMC simula-
tions is to improve the parameterization of the MFRT models.

Both MFRT and OKMC models have been used elsewhere to
make direct, apparently successful comparisons with experimental
data. However, such comparisons can be misleading because both
models include a number of adjustable material parameters that
may be exploited to obtain agreement. A more rigorous test of
the models would involve mutual benchmarking on sample prob-
lems such as those presented here to establish model parameters,
and then to simulate the desired experiments without further
parameter adjustment.
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